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INFLATION OF SPHERICAL RUBBER BALLOONS
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Abstract-When a spherical rubber balloon of the sort used in meteorological applications is inflated, the
onset of aspherical deformation is observed after the pressure maximum has been attained. Upon further
inflation the balloon regains its spherical shape. Here, the rubber balloon is idealized as an elastic membrane
and inflation is taken to be accomplished by a prescribed increase in enclosed volume. The axisymmetric
equilibrium states of slightly imperfect membranes are determined numerically by means of the
Ritz-Galerkin method. Several particular material models representative of the behavior of rubberlike solids
are employed in order to illustrate a number of feautres associated with the aspherical deformation.

1. INTRODUCTION

When a rubber balloon of the type used to gather high altitude meteorological data is inflated the
following course of events, depicted in [1,2], is generally observed. There is a stiff initial stage
during which the balloon is spherical. This persists until the pressure maximum is attained. After
the pressure begins to fall with increasing inflation, the balloon becomes noticeably aspherical.
As inflation continues, the asphericity eventually decreases and the balloon returns to a spherical
shape.

The balloon can be idealized as a spherical membrane and the process of inflation is properly
described as assigning the internal mass of fluid, not the pressure, so that no instability is
necessarily encountered at the maximum pressure point. The rubberlike solids of which such
balloons are made can be appropriately characterized as perfectly elastic materials, isotropic with
respect to the ground state. Over the range of extensions of interest here these materials are also
substantially incompressible.

Bifurcations of internally pressurized elastic spherical membranes into axisymmetric
nonspherical modes have been studied in [3,4] and [5] where, additionally, non-axisymmetric
modes were considered. Of particular relevance here is the finding of Feodos'ev [3] that if a
pressure minimum as well as a pressure maximum exists, a pair of bifurcation points for a given
mode may occur between the maximum and minimum pressures. Feodos'ev[3] restricted attention
to a particular form of strain energy function. Recently, an analysis along similar lines valid for a
general form of strain energy function as well as for a class of inelastic solids yielded similar
results [4]. In these studies the most critical mode is found to be one with modal deformations
corresponding to local thinning at one pole.

In this paper a form of strain energy function proposed by Ogden[6] for incompressible
isotropic elastic solids is employed and the bifurcation criteria given in [4] are specialized for
particular material models representative of the behavior of rubberlike solids. Attention is then
focussed on the behavior of imperfect pressurized spherical membranes made of such materials.
The problem is formulated exactly within the context of membrane theory, but attention is
restricted to axisymmetric deformations. The membrane is taken to be subject to a prescribed
increase in enclosed volume. An initial imperfection is specified and the deformation history is
calculated in an incremental manner by means of the Ritz-Galerkin method. At each stage of the
loading history a modified Newton-Raphson procedure is employed to solve the resulting
nonlinear equations. A comparison is made of the behavior of several material models.

2. PROBLEM FORMULATION

Three configurations of an axisymmetric closed membrane are considered; the reference
configuration, which is taken to be that of a sphere of radius Ro and uniform thickness to, the
initial unstressed configuration and the current configuration. A Lagrangian formulation is
employed and material points on the surface of the membrane are labelled by the coordinates 6
and q" where 8 is the polar angle and q, is the longitudinal angle. Due to the assumed rotational

409



410 A. NEEDLEMAN

symmetry, all field quantities are independent of </> and the nonvanishing displacements are w,
which is in the direction normal to the reference sphere and u which is tangential to the surface of
the reference sphere in a meridian plane, see Fig. 1.

The unstressed configuration is specified by initial displacements uI and WI measured from
the reference sphere and the initial, possibly nonuniform, thickness is denoted by (I. The current
configuration is also specified by displacements measured from the reference sphere, denoted by
U

Cand wC, respectively, and the current thickness is (c.

Principal axis notation is employed and the following conventions are adopted; subscripts
range from 1 to 2, with subscript 1 denoting principal values associated with the O-direction and
the subscript 2 denoting corresponding values in the </>-direction, while (),9 denotes
differentiation with respect to O.

The current configuration of the membrane is specified by the following three quantities,

C I (C C)el = R
o

w +U,9

e/ = ~o (W
C +cotO U

C

)

tV = ~o (W~9- U
C

).

(1)

Here, elc and e2c are the principal values of the linear strain tensor and .pc is a measure of the
rotation of the normal to the membrane, in that the projection of the normal to the membrane in
its current configuration on the tangent to the reference sphere is proportional to .pc.

The principal stretches, A/, and the principal values of the Lagrangian strain tensor, 1/ic , are
given in terms of elc, e/ and .pc by,

At
C = [(1 +en2+(.pcf]I'2

1/lc = etC +~(en2+~(.pcf C C + 1( c)21/2 = e2 2 e2 .

(2)

(3)

The quantities, e/, .pI, A/ and 1// are given by expressions of the form (1)-(3) with W
C and U

C

replaced by WI and uI
•

The difference between the volume enclosed by the membrane in its current configuration and
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Fig, I. Coordinate system and displacement vectors to the unstressed and current configurations.
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that enclosed by the reference sphere is denoted by 6. yc and is given by,

411

Analogously, the difference between the volume enclosed by the membrane in its initial
configuration and that enclosed by the reference sphere, denoted by 6. Y\ is given by an
expression of the form (4) with superscripts "e" replaced by superscripts "1".

Thus, the change in enclosed volume from the initial state to the current state, 6. Y, is

(5)

Here, and subsequently, quantities associated with the deformation from the initial state to the
current state have no superscript.

The principal stretches from the initial configuration to the current configuration are

(no sum). (6)

The materials considered here are taken to be incompressible and the incompressibility
condition is expressed by the relation,

(7)

Inflation is taken to be accomplished by some device that supplies given quantities of fluid to
the volume enclosed by the membrane. If the membrane is attached to a large reservoir that can
supply the needed quantities of fluid at constant pressure, it is appropriate to consider the
pressure to be the prescribed quantity. More often inflation is achieved by some device for which
the flow rate depends on the pressure. The most realistic alternative is to consider the mass of
fluid required for inflation to be the prescribed quantity and to account for the pressure
dependence of the fluid density. However, if the fluid is incompressible or nearly so, the volume
of fluid rather than the mass may be taken to be prescribed. This corresponds to the limiting case
of an infinitely stiff loading device and this idealization will be employed here.

The principle of virtual work takes the form

(8)

where p is the pressure and

(9)

while 6etC, Se2c and S'V are related to the displacement variations 6w c and 6u c by (1). The
principal stresses, fT" appearing in (8) are regarded as being thickness average quantities.

The relation (6) enables equivalent alternative expressions to be employed for the internal
virtual work. The one given in (8) is the most convenient for the present purposes.

Integrating by parts and employing the essential boundary condition that u vanish at (J = 0 and
7T, the expression for 6(6.Y C

) can be written in the form

The expressions employed in the principle of virtual work (8) and (10) may be obtained by
specializing the general nonlinear membrane formulas in [7].

For the isotropic incompressible elastic solids considered here, the existence of a strain
energy function is postulated. This strain energy function is an isotropic function of the principal
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stretches AI, A2and A3, where A3is given by 1/(A,A2). The usual practice in elasticity theory is to
express the strain energy function in terms of two independent strain invariants rather than
directly in terms of the principal stretches. This often complicates calculations, particularly of the
instantaneous moduli. An attractive alternative, suggested by Hill [9], is to write the strain energy
function directly in terms of the principal stretches. Here, the strain energy function is written in
the form proposed by Ogden [6].

et>(AI, A2, A3) = 2: J,Lr [A,a, +Ala, +AJ
a, - 3] (l1)t

r U r

where J,Lr and Ur are constants and the summation on r extends over as many terms as are
necessary to characterize a particular material. In (11), U r may take on any nonzero real value.

The principal values of the Cauchy, or true stress tensor are given by,

(i = 1,2,3, no sum) (12)

where am is the mean normal stress, which within the context of membrane theory is determined
by the requirement that a3 = O. Thus, from (11) and (12)

al = 2: J,Lr[Al
a
, - (A IA2r a

,]

(13)

The plane stress instantaneous moduli L relate increments of Cauchy stress tTi and
logarithmic strain i"

where
(no sum). (14a)

From (11) L is readily found to be given by

L 11 :::: 2: J,LrUr [A,", + (A tA2r",]
r

L n :::: 2: J,LrUr [A 2a, + (A IA2r",]
r

L 12 =L 21 =2: J,LrUr(A IA2r",.
r

(l4b)

It will be assumed that for any given material the appropriate values of J,Lr and Ur are such that
the moduli L are positive definite in the ground state.

For a perfect sphere, A/ =A/ = 1, t1 = to, one solution to the present problem, available for
all values of prescribed change in enclosed volume, corresponds to the sphericallY symmetric
state

WO
AI =A2=Ao = 1+­Ro

( to) ao
po = 2 R

o
A

0
3 '

(15)

From (15) and (14) it can be shown that a maximum or minimum pressure is attained when ao
achieves the value

(16)

where Am is the value of Ao at the maximum or minimum pressure.
Bifurcation of an internally pressurized spherical membrane into axisymmetric nonspherical

tThe one term version of (II) is due to Prof. R. Hill, see [6] footnote on p. 567.
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modes is also possible [3-5]. A complete set of axisymmetric eigenmodes is given by modal
displacements w'" and u'" of the form[3-5]

w'" = W~Pn(COS 9) '" _ '" dPn(cos 9)u - Un d9 (17)

where Pn is the Legendre polynomial of degree n(= 1,2,3...).
The mode giving the smallest bifurcation stretch, ,\q is the one with n = 1. The criterion for

bifurcation into this mode is [4]

(18)

In this mode it is necessary to constrain the membrane against rigid body translation. This
may be accomplished by arbitrarily setting WI = O. The bifurcation mode deflections correspond
to thinning at one pole with a corresponding thickening at the other.

Denoting the instantaneous biaxial stiffness by L o, where

Lo= L II + L 12 = L JL..a,['\oa, + 2.\0-2a,]
,

eqns (16) and (18) take the concise forms

1
(lJ'o/Lo)m = 3

1
(lJ'o/Lo)c = 2'

(19a)

(19b)

(19c)

From eqns (19b) and (19c) it is evident that a curve of lJ'o/Lo vs '\0 reveals the nature of the
bifurcation behavior of a spherical membrane. Essentially this plot was considered by
Feodos'ev[3] who, however, employed Lo/lJ'o as the dependent variable. Initially, lJ'o/Lo, is zero.
As deformation proceeds, this quantity increases and if it attains the value 113 a pressure
maximum takes place. A bifurcation into the n = 1 mode occurs if lJ'o/Lo reaches 112. A further
increase in lJ'o/Lo is needed for bifurcation into a higher order mode, the precise amount
depending on L II - L 12 as well as Lo[3, 4]. For many rubberlike solids lJ'01Lo reaches a maximum
and then decreases. If this maximum exceeds 112, a second bifurcation point for the n = 1 mode is
encountered. Finally, if lJ'o/Lo falls to 113 a pressure minimum is attained. For meteorological
balloons both a pressure maximum and minimum may occur, so that if lJ'01L o exceeds 1/2 there
will be two bifurcation points for the n = 1 mode.

In this study attention will be focussed primarily on two specific examples of the stress-strain
law (11). The first, subsequently referred to as Material I and characterized by the parameters,

a\ = 1.3

1-'-1 =6.3

a2 = 5.0

JL2 = 0.012

a, = -2.0
(20)

was found by Ogden[6] to give excellent agreement, for a variety of homogeneous stress states
with some experimental data of Treloar[8] for a particular rubber. The curve of stress,
nondimensionalized with respect to ~ JL..a" which is twice the ground state shear modulus, vs
stretch for this material in equal biaxial tension is shown in Fig. 2.

Figure 3 depicts plots of the nondimensional pressure, p*, and the stress modulus ratio, lJ'01Lo,

vs stretch '\0. The nondimensional pressure, p*, is defined by

(21)

The maximum and minimum pressures are attained at '\0 = 1.38 and '\0 = 4.32, respectively,
and these correspond to the two values of '\0 for which (19b) is satisfied. The bifurcation criterion
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(l9c) is also met for two values of Ao, namely 1.77 and 2.54. Between these two values, erolLo
achieves a maximum, erolLo=0.528, which occurs when Ao =2.10. The possibility of bifurcation
into a higher, n > I, mode was also investigated and it was found that no such bifurcations occur
for this material.

For comparison purposes Material II, characterized by the parameters

ul=0.8

JLl = 3.0

U2 = 6.0

JL2 = 0.016

U3 = 0.5

1L3 = 2.0
(22)

is considered. The equal biaxial tension stress-stretch curve for this material is also shown in Fig.
2.

Plots of nondimensionalized pressure, p*, and the stress to modulus ratio, erolLo, for this set
of parameters are depicted in Fig. 4. The maximum and minimum pressures occur at Ao =1.38 and
Ao=2.66, respectively. The two values of Ao for which the bifurcation criterion for the n =1
mode is satisfied are Ao =1.78 and Ao=1.96. Bifurcations into higher order (n > 1) modes are not
possible for this material.

For Material II there is a much sharper maximum pressure peak and the pressure increases
much more rapidly after the minimum value has been attained than for Material I. Also, note that
the excursion of the ratio erolLoabove 112 is somewhat less than in the previous example. Here,
the maximum value, erolLo= 0.505, is attained at Ao= 1.86.

The difference between these two material models of principal relevance here is the amount
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Fig. 4. Response of Material II in the spherically symmetric state. (a) curve. of pressure vs stretch and (b)
curve of stress divided by instantaneous biaxial stiffness vs stretch. The material parameters are given by eqn

(22) of the text.



416 A. NEEDLEMAN

of the excursion of CTo/Loabove 1/2. It is of interest to determine whether or not the amount of
this excursion correlated with the amount of asphericity that develops.

Neither of the material models considered here represents the behavior of the specific rubber,
DuPont Neoprene (polychloroprene), employed in Alexander's experimental study[l], although
the behavior of Material I appears qualitatively similar. Alexander[l] employed his
representation of the strain energy function in Feodos'ev's analysis[3] and found bifurcation
points, for the n =1mode, at Ao = 1.6 and Ao =4.3. In [1] the same strain energy function is found
to predict a pressure minimum at Ao =3.8. The occurrence of the minimum pressure between the
two bifurcation points is inconsistent with the analysis given in [3] as well as with the one given
here.

3. NUMERICAL METHOD

The initial shape and thickness of the membrane are specified by WI, uI and t I
• Here, attention

is confined to membranes that are nearly spherical. This enables a Ritz-Galerkin method to be
employed where the displacements W

C and U
C are expanded in terms of Legendre polynomials of

the form (17) so that,
N

WC=2: WnCpn(COs 8)
n=l

C _ ~ C dPn(cos 8)
u - £J Un d8 .

n=1
(23)

The rigid body translation mode is supressed by taking Wl
c == O. The quantities elc' e2c and tV in

(1) are given by,

e/ = R
1 2: [wn"Pn+unC(DPn cos 0 - n(n + I)Pn)]
o n

(24)

t/JC = R
1 2: [u/ - w/]DPnsin 8
o n

where
DPn== dPn(cos 8)

d(cos 8)
(25)

The principal stretches, At, and the principal strains, 'T]t, can then be calculated from (24) by (2)
and (3).

Expanding the principal of virtual work (8) about some given state gives to lowest order,

27TRo2to L" A/Al(f)[(::)2- (~~)4 TjI)~'T]IC + (A:~)2- (A:~t Tj2)~'T]2C

+(A~:f (etC8etC+ ~C8t/JC)] sin fJ dfJ

= 27TRo2pL" [(1 + elC+ e2C+ elCe2C)~wC - t/Jc (1 + en8uC]sin fJ dfJ

+27TRo
2pr [el C +e2c+etce2c+etCe2C)8wC- Nco + e2C)+ t,n2C}8u C]sin fJ dfJ

- {27TRo2torA/Ai(f)[CTI (~;CI;2 + CT2 (~;;;2] sin 8 dO - P8(AY
C
)}. (26)

Here, (') denotes the change in quantities from the given state while elc, t/Jc, CTI, p, AYC and 8'T]t
are evaluated at the given state.

Employing the moduli (14b), the expansions (23) and (24) and integrating with respect to 8
transforms (26) into a coupled set of linear algebraic equations for the 2N +1quantities w/, un

c

and p. The numerical integration was carried out by dividing the interval [0, 7T] into segments and
employing four point Gaussian integration within each segment.
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The resulting equations were solved by a combined incremental iterative procedure that
proceeded as follows. At a given stage of the loading history values of the 2N +1parameters, Un

c
,

w/ and p satisfying (8) are assumed known. An increment of one of these parameters is taken to
be prescribed. The incremental eqn (26) is solved for the remaining 2N parameters with the
term in braces set equal to zero since the given state satisfies equilibrium. The prescribed
parameter is then regarded as fixed and (26) is solved repeatedly, updating un

c
, wn

e and p after
each solution. The iterations are continued until the maximum change in unclRo, w/IRoand the
nondimensional pressure increment, Ii *, is less than some predetermined tolerance which for the
calculations reported on here is taken to be 10-4

• Over most of the loading history five or six
iterations were sufficient to obtain the desired accuracy. However, over a certain part of the
loading history it was found that the Newton-Raphson procedure diverged. The nature of the
divergence was a growing oscillation of the incremental amplitudes and this enabled a simple
corrective method to be employed. If such an oscillation was detected, linear interpolation
between the most recently computed iterates of opposite sign, rather than the Newton-Raphson
values, was employed to obtain the next correction. This procedure was continued until the
amplitude of the oscillations was sufficiently small and then the Newton-Raphson method was
employed again. It was found necessary to switch back to the Newton-Raphson procedure, when
the oscillations became less severe, since the asymptotic convergence rate of the linear
interpolation prodecure was unsatisfactory. Of course, the criterion for switching to the
Newton-Raphson iterate was somewhat arbitrary and on occasion this procedure would begin to
diverge again. In such a case, interpolation was re-employed. When this rather involved iteration
method needed to be employed, up to 30 iterations were required for convergence, even though
small increments were used. This poor convergence occurred during a clearly identifiable part of
the loading history, which will be pointed out when the numerical results are presented.

The parameter to be prescribed in a given increment was chosen by a procedure employed by
Dr. V. Tvergaard of the Technical University of Denmark (private communication, 1973). The
parameter that had the numerically largest incremental value in the previous increment is
prescribed at the next step. This enables numerical instabilities associated with local maxima or
minima in one or more of the quantities Un, Wn and p to be avoided.

The present computations were carried out with N == 3 and the interval [0, 7f] was divided into
five segments so that twenty integration points were employed. Throughout the deformation
histories computed here U3

c and W3
c remained small compared to woc and Utc. A portion of one

computation was repeated including w/ and u/. Even though this was near the point of
maximum asphericity including these terms had no appreciable effect. Furthermore, some
computations were repeated with forty integration points and these results also were nearly
identical to those obtained with twenty integration points.

4. NUMERICAL RESULTS FOR IMPERFECT SPHERICAL MEMBRANES

The results of the numerical calculations for imperfect spherical membranes with Material I
are depicted in Fig. 5, and the corresponding results for Material II are shown in Fig. 6. In these
figures the amplitude, ~I, of the bifurcation mode is defined by

/;-~
~t- R

o
' (27)

The absolute value is employed in (27) since there is symmetry about ~t == O. In Figs. 5 and 6 ~I

is plotted against Ao which is the ratio of the mean radius of the deformed membrane to the radius
of the reference sphere. Thus.

(28)

When the asphericity vanishes Ao == Ao.
An initial imperfection can be specified in several ways. In one case an initial stress free

displacement in the shape of the bifurcation mode is prescribed. Without loss in generality w/ is
taken to be zero and analogous to (27) It is defined as lu/IIRo• The initial thickness distribution is
then determined by requiring that the deformation from the reference sphere to the unstressed
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Fig. 5. Curves of bifurcation mode amplitude vs mean radius for Material I with two different initial
imperfection amplitudes. The material parameters are given by eqn (20) of the text.
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Fig. 6. Curves of bifurcation mode amplitude vs mean radius for Material II with two different initial
imperfection amplitudes. The material parameters are given by eqn (22) of the text.

state satisfy incompressibility. Another type of initial imperfection employs the initial thickness
distribution calculated in the above manner but takes the initial deviation from sphericity to be
zero. In this case the deformation from the reference sphere to the unstressed state does not
satisfy incompressibility.

For both types of initial imperfection the maximum deviation of the absolute value of t11to
from unity is approximately 2~1 for sufficiently small ~I' For the results displayed in Figs. 5 and 6
the second type of imperfection was employed. Some calculations were repeated using the first
type of imperfection without appreciably altering the results. On the other hand, if in the
unstressed state the thickness is uniform but there is a small initial deviation from sphericity, a
perturbation analysis [4] and numerical calculations carried out here reveal that in the limit ,\o-+,\c

the slightly aspherical membrane essentially bifurcates as a perfect sphere. Thus, the important
aspect of any initial imperfection is the deviation from uniform thickness and small initial
deviations from sphericity do not playa significant role.
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In the calculations displayed in Figs. 5 and 6 two imperfection amplitudes were employed
f, =0.001 and f, =0.0001. All curves obtained here are qualitatively similar in that very little
growth of ~, is evident until the vicinity of the first bifurcation point, the asphericity then grows
rapidly, reaches a maximum and then decreases. In the vicinity of the second bifurcation point
the asphericity essentially disappears. Note that nothing special occurs at the maximum pressure
point.

For the prescribed change in enclosed volume loading considered here, stability, in the usual
engineering sense, depends on whether or not the current volume, yc, is monotonically
increasing along the equilibrium path. Here,

yc =dYC + Yo (29)

where Yo is the volume enclosed by the reference sphere and d y c is given by (4). A more
convenient measure of the current volume enclosed by the membrane is provided by

(33)

For spherically symmetric deformation A=Ao =Ao• When there is aspherical deformation
monotonically increasing Ao along the equilibrium path does not guarantee monotonically
increasing Aand vice versa. However, for all the equilibrium paths displayed in Figs. 5and 6 Aas
well as Ao is increasing monotonically so that for the loading condition employed here the
deformation is stable along these paths.

There are several other features common to the results presented in Figs. 5 and 6. One is that
the amplitudes of the higher order terms u2lRo, w21Ro, etc., remain small compared to ~" For
example with Material I and f, =0.001, the maximum value of ~, achieved is 0.85, while the next
largest mode amplitude, w2lRo, attains a maximum of 0.12. Thus, although these higher order
modes may play a significant role in equilibrating the membrane in the aspherical state their
influence on the deformed shape is slight. Another common feature is that the pressure is
monotonically decreasing along the aspherical equilibrium path.

As stated in Section 3, the part of the loading history which caused the greatest numerical
difficulty can be identified on the curves in Figs. 5and 6. It is the region in the vicinity of the point
of maximum asphericity. Convergence difficulties usually were greatest near where the rates of
change of Ao and ~, are about the same. Convergence of the numerical method was often
somewhat better at the actual maximum of asphericity.

For Material I, there is very little difference in the maximum value of ~I attained for the two
imperfection values considered, with the smaller imperfection amplitude (~I)max = 0.83 while with
the larger imperfection amplitude, (~')m"" = 0.85. In both cases this maximum is attained at
Ao = 2.12, which is very close to the value at which (uoILo) attained its maximum in Fig. 3.
Although the plot of ~, vs Ao provides the most graphic picture of the asphericity, a more
appropriate indication of the degree of asphericity is provided by the quantity u,c/AoRo, which is
the ratio of the amplitude of the aspherical mode to the current mean radius and is approximately
0.4 at maximum asphericity in Fig. 5. Another measure of asphericity is A/Ao,the cube root of the
ratio of current volume of the membrane to the volume of a sphere of radius AoRo, which is the
current mean radius of the membrane. For Material I, A/Ao = 1.1 at maximum asphericity. The
corresponding deviation of the shape of the deformed membrane from a sphere is difficult to
perceive in a line drawing. However, if material points on the membrane are marked as by the
manufacturer's seam on a real balloon, the movement of this seam should be the most readily
identifiable indicator of asphericity. This seems to be consistent with the observations reported in
[1,2].

Another feature of the equilibrium state at the maximum of ~, consistent with the lack of
development of large asphericity is that tCu, and tCu2 are nearly constant and equal throughout
the membrane. For example, with Material I and fl = 0.0001, at maximum asphericity nto is 0.1
at one pole and 0.43 at the other, compared with tClto =0.22 for a sphere homogeneously inflated
to the same value of AoRo, yet the ratio of tCu, at the thinner pole to tCu, at the thicker pole is 1.03.
Of course this means that a significant stress concentration develops at the thinner pole.

As depicted in Fig. 6considerably less asphericity is developed with Material II. The behavior
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in this example is also more sensitive to the magnitude of el. The maximum values of ~t are 0.26
and 0.21 for the larger and smaller imperfection amplitudes, respectively, and at maximum
asphericity the corresponding values of ulcl>.oRo are 0.14 and OJ I. In both cases A/Aois about
1.01. The maximum asphericity occurs at Ao = 1.86 which, as shown in Fig. 4, is when the
maximum of uo/Looccurs.

At least for the two examples considered in Figs. 5 and 6, the behavior of a slightly imperfect
spherical membrane correlates well with the curve of uolLo• Significant growth of the asphericity
begins in the vicinity of the bifurcation point, i.e. when uo/Lo= 112, the maximum asphericity
occurs when Ao is just about equal to the value of >'0 for which uolLois maximized and the
asphericity essentially disappears when uo/Lo falls to 1/2. These two examples suggest that the
maximum amplitude of asphericity achieved will increase when the excursion of uolLoabove 1/2
increases.

As stated previously, for the two examples considered so far the equilibrium paths
corresponded to monotonically increasing enclosed volume. A simple example for which this is
not the case is illustrated in Fig. 7. Here, a one term strain energy function of the form (II) is
considered with IJ-t = 8.2 and at = 1.2. Figure 7(a) shows the stress nondimensionalized with
respect to IJ-ta I plotted against stretch for equal biaxial tension. Curves of p*, the nondimensional
pressure (21), and uo/Lovs stretch are given in Fig. 7(b). After the maximum pressure has been
attained, which occurs at Ao = 1.36, the pressure decreases monotonically and no local pressure
minimum is achieved. Such behavior is not typical of most rubberlike materials. However, since
attention is focussed on the details of the behavior in the vicinity of the bifurcation point, which
is >'0 = 1.61, nothing need be supposed about the validity of this representation of the material
behavior at very large values of >'0.

Figure 7(c) depicts the curve of bifurcation mode amplitude, ~t, vs Ao for ~l = 0.001. The mean
radius, Ao, reaches a maximum and then decreases with increasing asphericity. This contrasts
with the previous examples in which Ao increased monotonically. The stability of the aspherical
equilibrium state is revealed by Fig. 7(d). Initially the enclosed volume Ais monotonically
increasing. However, eventually a local maximum is attained. Note that this occurs after Ao has
begun to decrease. At the maximum of A, ~t = 0.15. Throughout the range of aspherical
deformation depicted in Fig. 7(d) the pressure is decreasing monotonically along the equilibrium
path.
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Under prescribed increase in enclosed volume, "snap through" would occur when the
maximum of Ais attained. Then further growth in the aspherical mode would occur stably under
the prescribed loading condition, even though Ao is decreasing. This example illustrates that if
(To/Losufficiently exceeds 112, an instability can occur even under prescribed change in enclosed
volume.

5. CONCLUDING REMARKS

The numerical examples considered have illustrated a number of features associated with the
development of aspherical deformation in pressurized elastic spherical membranes. The results
indicate that the maximum deviation from sphericity increases with the excursion of (TolLo above
1/2 and that for a sufficient excursion above 1/2 stability, in the usual engineering sense, with
respect to a prescribed increase in enclosed volume is lost. The present results also strongly
suggest that the postbifurcation path for a perfect elastic spherical membrane is a closed loop
connecting the two bifurcation points, as conjectured by Sewell [2]. This raises the question as to
whether or not such a loop always occurs, for physically reasonable elastic constitutive laws,
when there are two bifurcation points corresponding to the same mode between the maximum
and minimum pressures.

Most aspects of the behavior determined here are in qualitative agreement with the
observations in [1,2] in so far as comparisons can be made. Anotable exception is Alexander's [1]
observation that the spherically symmetric equilibrium path was rejoined after the pressure
minimum. This discrepancy could be due to a number of factors. One possibility is that for the
specific rubber and loading condition employed in [1] an instability is encountered on the
aspherical equilibrium path and return to the spherical state takes place by "snap through".
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